CamHack25/engine.py
2025-11-01 19:33:48 +00:00

200 lines
5.2 KiB
Python
Executable file

#!/usr/bin/env python
import json
import os
import overpy
import numpy as np
import pandas as pd
from pathlib import Path
# brandname : overpass query filters
BRANDS: dict[str, str] = {
"greggs": "[\"brand:wikidata\"=\"Q3403981\"]",
"tesco": "[\"brand:wikidata\"~\"^(Q487494|Q98456772|Q25172225|Q65954217)$\"]", # Includes Tesco Express, Tesco Extra, and One Stop
}
CACHE_FOLDER = Path(".cache")
LOCS_COUNT = 3
DISTS_COUNT = 100
FORMAT_FACTOR = 1e6 # μm
EncodedLocation = list[tuple[float, list[float]]]
def fetch_data(brand: str, cache: bool = True) -> list[tuple[float, float]]:
"""Fetch a list of locations from OSM."""
cache_loc = (CACHE_FOLDER / f"{brand}.json")
# Try load from cache
if cache and cache_loc.exists():
with open(cache_loc, "r") as f:
data = json.load(f)
return data
api = overpy.Overpass()
filters = BRANDS[brand]
query = api.query(f"nwr{filters}; out center;")
result = []
for way in query.ways:
result.append((float(way.center_lat), float(way.center_lon)))
for node in query.nodes:
result.append((float(node.lat), float(node.lon)))
for (lat, lon) in result:
if (lat is None) or (lon is None):
raise ValueError("Item missing coords!")
# Save to cache
if cache:
if not CACHE_FOLDER.exists():
os.makedirs(CACHE_FOLDER)
with open(cache_loc, "w") as f:
json.dump(result, f)
print(f"Got {len(result)} {brand}s")
return result
def spherical_dist(pos1, pos2, r=6378137):
"""Calculate sperical distances between two arrays of coordinates."""
pos1 = pos1 * np.pi / 180
pos2 = pos2 * np.pi / 180
cos_lat1 = np.cos(pos1[..., 0])
cos_lat2 = np.cos(pos2[..., 0])
cos_lat_d = np.cos(pos1[..., 0] - pos2[..., 0])
cos_lon_d = np.cos(pos1[..., 1] - pos2[..., 1])
return r * np.arccos(cos_lat_d - cos_lat1 * cos_lat2 * (1 - cos_lon_d))
StationT = tuple[tuple[float, float], float]
def trilat_error(stations: list[StationT], position: tuple[float, float]) -> float:
"""Calculate the error in a trilaterated position."""
sq_errors = [(sdist - spherical_dist(np.array(position), np.array(spos))) ** 2 for spos, sdist in stations]
return sum(sq_errors) / len(sq_errors)
def trilaterate(stations: list[StationT]) -> tuple[float, float]:
"""Trilaterate a position, given a list of stations.
Each station is of the format ((lat, lon), distance).
"""
# TODO scipy optimise using trilat_error
return (0., 0.)
def encode(location: tuple[float, float]) -> EncodedLocation:
"""Encode a location."""
greggs = np.array(fetch_data("greggs"))
repeat_rows = np.tile(greggs, (len(greggs), 1, 1))
repeat_cols = np.transpose(repeat_rows, (1, 0, 2))
dist_matrix = spherical_dist(repeat_rows, repeat_cols)
repeated = np.tile(location, (len(greggs), 1))
distances = spherical_dist(repeated, greggs)
distances = pd.Series(distances)
distances = distances.sort_values()
closest = distances.head(LOCS_COUNT)
closest_dist = list(closest.values)
closest_ind = list(closest.index)
result: EncodedLocation = []
for v, i in zip(closest.values, closest.index):
greggs_distances = np.sort(dist_matrix[i])[1:DISTS_COUNT+1]
result.append((v, list(map(float, greggs_distances))))
# Stub
return result
def decode(location: EncodedLocation) -> tuple[float, float]:
"""Decode into a location."""
#form the distances matrix
greggs = np.array(fetch_data("greggs"))
repeat_rows = np.tile(greggs, (len(greggs), 1, 1))
repeat_cols = np.transpose(repeat_rows, (1, 0, 2))
dist_matrix = spherical_dist(repeat_rows, repeat_cols)
#split the distances matrix into a list of series, which allows us to sort each row
dist_series_list = []
for i in dist_matrix:
dist_series_list.append(pd.Series(i).sort_values().head(len(location[0][1])+1)[1:])
#part 1: find the ID of each gregg's
closest_greggs = []
for i in range(len(location)):
dists = location[i][1]
errors = []
for j in dist_series_list:
errors.append(sum((j-dists)**2))
minerr = min(errors)
if minerr > 1:
print(f"warning: high error value of {minerr}")
closest_greggs = [errors.index(min(errors))]
#part 2: trilaterate
# Stub
return (0.091659, 52.210796)
def format_dist(dist: float) -> str:
return f"{int(round(dist * FORMAT_FACTOR))}"
def parse_dist(dist: str) -> float:
return float(dist) / FORMAT_FACTOR
def format_location(location: EncodedLocation) -> str:
"""Format an encoded location as a string."""
return ";\n".join([f"{format_dist(a)}:{','.join(map(format_dist, b))}" for (a, b) in location])
def parse_location(location: str) -> EncodedLocation:
"""Parse a location string into an EncodedLocation."""
# Stub
return [
(5., [1., 2., 3.]),
(6., [4., 5., 6.]),
]
def main():
"""Testing."""
#print("Running query...")
#greggs = fetch_data("greggs")
#print(f"Query done - got {len(greggs)} Greggs!")
outcome = encode((52.210796, 0.091659))
decode(outcome)
if __name__ == "__main__":
main()